
RL accelerated control of a 6-DOF
robotic arm

AE 494: BTP-II

by

Pranav Malpure (200010055)

under the guidance of

Prof. Mayank Baranwal

April 20, 2024

Department of Aerospace Engineering

Indian Institute of Technology, Bombay

Contents

Acknowledgements ii

1 Introduction 1

2 Methodology/Theory 2

2.1 Modelling the environment & tasks using Google Deepmind’s Control

Library . 2

2.1.1 Using dm control . 3

2.2 Selecting the task and the environment 6

2.3 Selecting an RL policy . 6

2.4 Soft-Actor Critic . 6

2.5 Hyperparameters tuning . 7

3 Experiments and Results 8

3.1 Neural Network Architecture . 8

3.2 Observation values . 10

3.3 Entropy coefficient . 11

3.4 Reward Structure . 12

Conclusion 15

Further Scope 16

References 16

i

Acknowledgements

I would like to express my deep gratitude to Prof. Mayank Baranwal, my guide, for

his patient guidance, encouragement and valuable feedback throughout the duration

of this project. I would also like to thank Prof. Rohit Gupta, my co-guide, for

supporting my BTP throughout the year.

ii

Chapter 1

Introduction

Effectively controlling a robotic arm and making it do general tasks is a major

challenge to tackle in robotics. While the theory of robotics based upon kinematic

equations and linear algebra control is very robust and help us to solve the chal-

lenges in a very formal way, it is not possible to model each and every scenario

in the environment all the time. This calls for a data based approach to solve the

challenges. In this project, I analyse the use of reinforcement learning based control

of robotic arm to guide it to a specific point in 3-D space. Although there are vari-

ous inverse kinematics based approaches, it is interesting to see how can we use RL

to perform this task and then further develop on doing specific tasks. The report

is structured in the following way – I firstly describe the environment which I am

using to simulate my algorithms, then I discuss about the RL algorithm which I

use to approach the problem, then I discuss the results which I achieved using my

algorithm, and then the future scope of improvements.

1

Chapter 2

Methodology/Theory

2.1 Modelling the environment & tasks using Google

Deepmind’s Control Library

To effectively implement reinforcement learning (RL) for controlling the robotic arm

in a dynamic and unpredictable environment, it is crucial to accurately model both

the surroundings and the specific tasks at hand. Due to the already present vast

number of state of the art environments simulators available, it was imperative that

I pick one of them according to my needs and proceed with that. After surveying

a number of possible such environments, I decided to use the Google Deepmind’s

control library - dm control, which works in an integrated way on the top of mujoco,

a physics engine, and provides a set of environments and tasks to implement RL

algorithms on.

Figure 2.1: The kinova Jaco arm

2

CHAPTER 2. METHODOLOGY/THEORY 3

2.1.1 Using dm control

To get familiar with the library, I began with understanding the code structure

and then performed a few basic tasks and simulations. The main components of

dm control include a Mujoco wrapper which provides convenient bindings between

physics simulator and RL code. It provides a set of physics-based environments that

can be used for reinforcement learning tasks. These environments include tasks such

as humanoid and quadruped locomotion, manipulation, and navigation.

The Environment class is a lower-level abstraction that represents the physi-

cal simulation environment. It is responsible for interacting with the underlying

MuJoCo simulation engine and provides the necessary infrastructure for defining

and working with tasks. The Environment class can be instantiated using the load

method, which takes an optional seed argument for seeding the random number

generator used by the environment. It provides a number of method functions

such as: reset() Initialises the state, sampling from some initial state distribution.

step() Accepts an action, advances the simulation by one time-step, and returns a

TimeStep namedtuple. The step function accepts an action as input, and computes

the next state of the environment based on the dynamics defined in the underlying

MuJoCo physics engine. action spec() describes the actions accepted by an En-

vironment. The method returns an ArraySpec, with attributes that describe the

shape, data type, and optional lower and upper bounds for the action arrays.

The Composer framework organises RL environments into a common structure

and endows scene elements with optional event handlers. At a high level, Composer

defines three main abstractions for task design: The composer.Entity serves as a

modular and self-contained component, encapsulating an MJCF model, observables

and potentially callbacks executed at specific stages of the environment’s lifecycle.

These entities can be organized into a hierarchical tree structure by attaching child

entities to a parent. Conventionally, the top-level entity is referred to as an ”arena”

and provides a fixed ¡worldbody¿ for the consolidated MJCF model.

A composer.Task comprises a tree of composer.Entity objects that populate the

physical scene and offer reward, observation, and termination methods. Addition-

ally, a task can define callbacks to implement ”game logic,” such as modifying the

scene in response to various events, and providing additional observables specific to

the task.

The composer.Environment wraps an instance of composer.Task within an RL

CHAPTER 2. METHODOLOGY/THEORY 4

environment that agents can interact with. This entity takes on the responsibility

of compiling the MJCF model, triggering callbacks at relevant points in an episode

and determining termination conditions, whether through task-defined criteria or a

user-defined time limit. It also manages a random number generator state used by

the callbacks, ensuring reproducibility in experiments.

Figure 2.2 illustrates the sequence of callbacks in the Composer framework, or-

ganized into events occurring during the reset of an RL episode and those occurring

during the stepping of the environment. Each callback is executed in a specific

order, starting with the one defined in the Task, followed by those defined in each

Entity during a depth-first traversal of the Entity tree, starting from the root (con-

ventionally the arena) and following the order of attachment.

During the reset phase, the first of the two callbacks is initialize episode mjcf.

This callback enables modifications to the MJCF model between episodes, allowing

changes to quantities that are fixed once the model is compiled. These modifications

impact the generated XML, which is then compiled into a Physics instance and

passed to the initialize episode callback, where the initial state can be set.

The Environment.step sequence begins with the before step callback, playing a

crucial role in translating agent actions into the Physics control vector. To ensure

stability, a sub-step loop is introduced to decouple potentially very small physics

simulation steps from the agent’s control time-step. Each Physics substep is pre-

ceded by before substep and followed by after substep. These callbacks are useful for

detecting transient events in the middle of an environment step, such as a button

press.

The internal observation buffers are updated according to the configured up-

date interval of each Observable unless the substep is the last one in the environ-

ment step. In this case, the after step callback is called before the final update of

the observation buffers. The internal observation buffers are then processed based

on the delay, buffer size, and aggregator settings of each Observable to generate

”output buffers” that are returned externally.

At the conclusion of each Environment.step, the Task’s get reward, get discount,

and should terminate episode callbacks are invoked to obtain the step’s reward,

discount, and termination status, respectively. It’s recommended to compute these

values in the after step callback, cache them in the Task instance, and return them

in the respective callbacks, as they are often interdependent.

CHAPTER 2. METHODOLOGY/THEORY 5

Figure 2.2: Diagram showing lifecycle of composer callbacks. Rounded rectangle
represent that Tasks and entities may implement. Blue rectangles represent built-in
Composer operations.
source: https://arxiv.org/pdf/2006.12983.pdf

CHAPTER 2. METHODOLOGY/THEORY 6

2.2 Selecting the task and the environment

Building custom tasks and mujoco models is an extensive work, and would have

occupied much of my time just to set things up, defeating the main purpose of the

project. Thus I decided to go with pre-defined kinova robotic arm based environ-

ment, which also has a lot of pre-defined structures for general tasks. It provides 6

degrees of freedom for the robotic arm, and further 3 for its gripper claws, one in

each. See Fig 2.1. For further experiments, this environment also provides compat-

ibility and easy scalability.

Now that once the environment and task to be done is finalised, we are all set

to implement RL algorithms.

2.3 Selecting an RL policy

Choosing an RL policy involves numerous considerations, with various options avail-

able, each with slightly different objectives. In this case, a policy which will explore

significantly will be better suited due to the highly complex and continuous action

space involved in guiding the robotic arm to a specific point in space.

Actor-Critic methods offer a distinct advantage in this context by providing

a framework that combines the benefits of both policy learning for allowing ex-

ploration, and value learning enabling effective evaluation of actions in the given

environment. This dual approach enhances the adaptability of the RL algorithm to

the complexities of our task giving more efficient learning and convergence towards

optimal solutions. In an Actor-Critic method, the actor updates the policy based

on θ parameter, and the critic evaluates the policy and provides input for gradient

descent. The policy is referred to as the actor that proposes a set of possible actions

given a state, and the estimated value function is referred to as the critic, which

evaluates actions taken by the actor based on the given policy.

θnew ← θ + α

T−1∑
t=0

(rt + V̂ (st+1)− V̂ (st))∇θln[πθ(s
t, at)]

2.4 Soft-Actor Critic

Soft Actor Critic, or SAC, is an off-policy actor-critic deep RL algorithm based on

the maximum entropy reinforcement learning framework. In this framework, the

CHAPTER 2. METHODOLOGY/THEORY 7

actor aims to maximize expected reward while also maximizing entropy. That is, to

succeed at the task while acting as randomly as possible. Prior deep RL methods

based on this framework have been formulated as Q-learning methods. SAC com-

bines off-policy updates with a stable stochastic actor-critic formulation. A central

feature of SAC is entropy regularization. The policy is trained to maximize a trade-

off between expected return and entropy, a measure of randomness in the policy.

This has a close connection to the exploration - exploitation trade-off: increasing

entropy results in more exploration, which can accelerate learning later on. It can

also prevent the policy from prematurely converging to a bad local optimum.

2.5 Hyperparameters tuning

Now once we fix a policy, the next thing to select are the hyperparameters. These

include architecture of the neural network used for the policy and Q value function,

the number and type of observations, the reward structure, episode terminating

condition, control actions and entropy temperature to name a few.

Chapter 3

Experiments and Results

Model was trained on episodes lasting 15 seconds of duration. Every episode started

with a random start and target point for the end effector. If the previous episode

ended in a success, the start and end points were randomly sampled from the

reachable space of the end effector. The control actions to the model were values

between 0 to 2π, subsequently mapped to respective control signals internally by

the simulator. The success of an episode is defined in a way that if the end effector

reaches the target sphere(a sphere of radius 0.15m around the target point) and

stays there for 1.5 seconds. Past learnings from BTP-I has helped in tuning some

parameters in an efficient way.

3.1 Neural Network Architecture

The size of neural network was reduced from 6x256x128x6 to 15x12x8x6 for the

policy actor, and 21x15x9x1 for the critic q function. This led to faster training pe-

riod and reduced the heavy underfitting happening before. The below plots 3.1 and

3.2 show the comparison between the higher number of neurons and lesser number

of neurons based architecture. In the lesser neurons architecture, the episode is

successful more number of times, while for the more neurons case, only once did

the episode ended in a success.

8

CHAPTER 3. EXPERIMENTS AND RESULTS 9

Figure 3.1: Before decreasing the number of neurons per layer

Figure 3.2: After decreasing the number of neurons per layer

CHAPTER 3. EXPERIMENTS AND RESULTS 10

3.2 Observation values

An important decision was to make was the observation values to be chosen to

provide to the agent. The obvious observation values are that the agent should

know about the current joint positions. But there can be several ways of reaching

those joint positions. The observation values should be such that when the agent

has to guide the arm from point A to point B in space, it should also be able to

learn to do it from A to B’ provided A’ and B’ are equivalent of A and B in some

other coordinate frame, or just shifted with the spatial geometry remaining the

same. To induce this behaviour in the agent, additional observations were provided

in the form of the current joint velocities, and the current x,y,z location of the end

effector in space. The below plots 3.3 and 3.4 reflect the impact of adding the end

effector pos in the observation values. The addition of the three observation values,

lead to more positive episodic rewards.

Figure 3.3: Before adding end effector position as an observation value

CHAPTER 3. EXPERIMENTS AND RESULTS 11

Figure 3.4: After adding end effector position as an observation value

3.3 Entropy coefficient

An advantage of using the Soft Actor critic method is the availability of the control

of the entropy term. The entropy term controls the amount of exploration, which

can be adjusted by changing the entropy coefficient known as temperature. The

αH(π(·|st)) is the entropy coefficient in the expression for J(π). This parameter was

tuned dynamically during the training to get better results. It started with fixing

the target entropy to a fix value of 0, or log(6) signifying the 6 different control

actions, but the results did not meet expectations. After a lot of experimenting,

the entropy coefficient was set as follows. It was started with 1 in the beginning, and

as the episodes progressed, the entropy coefficient was discretely increased to make

the agent explore more until an episode resulted in a successful path to target. Once

target was reached the entropy temperature was again set to zero. This pattern

resulted in a more converged training compared to other experiments and hence

was followed for the first 12000 episodes in the plot above. Once enough training

was done, this tuning was done away with and the temperature remained the same,

i.e. 1. The plots 3.5 shows the variations of entropy in the final training.

CHAPTER 3. EXPERIMENTS AND RESULTS 12

Figure 3.5: The varying entropy during the final training

3.4 Reward Structure

The reward structure was modified to give the policy a better training incentive.

The reward was defined as:

If the end effector is inside the target sphere:

Reward =
time inside radius ∗ 100 ∗ Target radius

2 ∗ distance ∗ 40

The above reward structure provides a greater reward for staying inside the target

sphere for a longer time, as well as incentivises it to go further towards it centre

by providing a greater reward for lesser distance to the centre. The other factors

in the denominator are to reduce the magnitude of the total episodic reward and

limit it to around 20 on the upper side.

If the end effector outside the target sphere:

Reward =
−1 + e−distance

65

Here, if the end effector is outside the target sphere, then this gives a negative

CHAPTER 3. EXPERIMENTS AND RESULTS 13

reward while conditioning that the further away the end effector is from the target

sphere, the more negative reward it gets. As we can see that -1 + exp will always

be negative between 0 and 1, and as distance gets closer to zero, the magnitude of e

term increases, thus bringing the reward closer to zero. The factor of 65 is obtained

through experiments which limits the total episodic reward to upto min of -4.

The reward plot sans the factors is shown below in 3.6. As is seen, the rewards

structure did not encourage the right actions. There were many other reward struc-

tures tried apart from this to reach the current final reward structure.

Figure 3.6: The lesser red lines implying that reward structure not efficient

CHAPTER 3. EXPERIMENTS AND RESULTS 14

Figure 3.7: The red lines become slightly more dense as we train more episodes

3.7 is the final training plot. The red lines corresponding to the episode number

corresponds to a successful episode. The below reward vs episode plot were reached

by following the above reward structure.

Conclusion

With the plot in 3.7, we can observe that the density of red lines(representing

episode success) is stagnated towards the end, implying that the model has con-

verged. The model when successful, finds a trajectory to the final target sphere

and stays inside the sphere for 1.5 seconds, which is defined to be as a successful

episode. The problem being solved is a ’control’ problem, and one may wonder if

is this already acheived through inverse kinematics’ numerical solutions. Although

numerically solving inverse kinematics presents us with the values of the final joint

positions required, it doesn’t reveal the trajectory from the current to the final joint

positions. Similarly, it doesn’t consider the physical effects of the environment and

self collisions as well.

At the current stage of the model, further training is unlikely to significantly

increase accuracy, as evidenced by the saturation of the success rate depicted in

the 3.7. Achieving higher accuracy would require a different approach, particularly

regarding the observation values utilized and the corresponding rewards. It’s im-

portant to note that in our case, episode success is defined by the duration the end

effector remains inside the sphere. However, upon reviewing the reward plot 3.7, we

observe that in every episode where the episodic reward is positive (the blue plot),

the end effector enters the target sphere for a period before moving out. This out-

come serves as an initial stage, and subsequent tasks, such as object manipulation

and gripping, can be pursued once the end effector successfully reaches the sphere,

at our current stage of the model.

15

Further Scope

The project started out with an aim to pick up random objects from an unknown

surrounding. But the task of the navigating it to a random target posed multiple

problems which occupied up the future task in line. Now that the arm is robustly

able to navigate to a point in 3D space, it can be left to see the possibilities ahead

to grip and pick up objects. The next task can be achieved through a mix of vision

and force based inputs by placing force sensors on various positions on the gripper.

This blend of vision and force inputs will enhance the arm’s ability to perceive

and interact with its surroundings, paving the way for more sophisticated object

manipulation tasks.

References

1. dm control: Software and Tasks for Continuous Control

2. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learn-

ing with a Stochastic Actor

3. PFRL Docs

4. Proximal Policy Optimization Algorithms

5. Trust Region Policy Optimization

6. Continuous Control with Deep Reinforcement Learning

16

https://arxiv.org/pdf/2006.12983.pdf
https://arxiv.org/pdf/1801.01290.pdf
https://arxiv.org/pdf/1801.01290.pdf
https://github.com/pfnet/pfrl
https://arxiv.org/pdf/1707.06347
https://arxiv.org/pdf/1502.05477
https://arxiv.org/pdf/1509.02971

	Acknowledgements
	Introduction
	Methodology/Theory
	Modelling the environment & tasks using Google Deepmind's Control Library
	Using dm_control

	Selecting the task and the environment
	Selecting an RL policy
	Soft-Actor Critic
	Hyperparameters tuning

	Experiments and Results
	Neural Network Architecture
	Observation values
	Entropy coefficient
	Reward Structure

	Conclusion
	Further Scope
	References

